2,871 research outputs found

    Test beam studies of the TRD prototype filled with different gas mixtures based on Xe, Kr, and Ar

    Full text link
    Towards the end of LHC Run1, gas leaks were observed in some parts of the Transition Radiation Tracker (TRT) of ATLAS. Due to these leaks, primary Xenon based gas mixture was replaced with Argon based mixture in various parts. Test-beam studies with a dedicated Transition Radiation Detector (TRD) prototype were carried out in 2015 in order to understand transition radiation performance with mixtures based on Argon and Krypton. We present and discuss the results of these test-beam studies with different active gas compositions.Comment: 5 pages,12 figures, The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016); Acknowledgments section correcte

    Some results of test beam studies of Transition Radiation Detector prototypes at CERN

    Full text link
    Operating conditions and challenging demands of present and future accelerator experiments result in new requirements on detector systems. There are many ongoing activities aimed to develop new technologies and to improve the properties of detectors based on existing technologies. Our work is dedicated to development of Transition Radiation Detectors (TRD) suitable for different applications. In this paper results obtained in beam tests at SPS accelerator at CERN with the TRD prototype based on straw technology are presented. TRD performance was studied as a function of thickness of the transition radiation radiator and working gas mixture pressure

    Identification of particles with Lorentz factor up to 10410^{4} with Transition Radiation Detectors based on micro-strip silicon detectors

    Full text link
    This work is dedicated to the study of a technique for hadron identification in the TeV momentum range, based on the simultaneous measurement of the energies and of the emission angles of the Transition Radiation (TR) X-rays with respect to the radiating particles. A detector setup has been built and tested with particles in a wide range of Lorentz factors (from about 10310^3 to about 4×1044 \times 10^4 crossing different types of radiators. The measured double-differential (in energy and angle) spectra of the TR photons are in a reasonably good agreement with TR simulation predictions.Comment: 31 pages, 12 figures, paper published on Nuclear Instruments & Methods

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    Дифференциация и интеграция исследовательской базы науки и техники в условиях их непрерывного развития

    Get PDF
    The paper considers main regularities of differentiation and integration of research at higher educational institutions. Peculiar features of integration process development in the activity of the BNTU research division are given in the paper. The paper contains indices of the BNTU research activity in 2004.Рассмотрены основные закономерности дифференциации и интеграции научных исследований в высшей школе. Отражены особенности развития интеграционных процессов в деятельности научно-исследовательской части БНТУ. Приведены показатели научной деятельности БНТУ в 2004 г

    A concept of the transition radiation detector for a hadron separation in a forward direction of the LHC experiments

    Get PDF
    Studying of hadron production in forward direction at the LHC energy has a great interest both for understanding of the fundamental QCD processes and also in applied areas such as the description of ultra-high energy cosmic particle interactions. The energies of secondary hadrons in such studies almost reach the maximum energy available at the LHC of ∼6 TeV, which corresponds to a Lorentz γ-factor up to 104 and above. The only effective technique able to identify particles in this range is based on the transition radiation detectors (TRD). Prototypes of such kind of detector were built and tested at the CERN SPS accelerator. Some experimental results obtained in these tests are briefly presented here and compared with Monte Carlo (MC) simulations. MC model demonstrates a good agreement with the experiment. On this basis a concept of a full-scale TRD optimized for the hadron identification in the TeV energy region is proposed. Different particle identification techniques were considered and examined. The expected detector performance to reconstruct secondary hadrons produced in forward direction at the LHC is presented

    НАУЧНЫЙ ПОТЕНЦИАЛ И ПРОБЛЕМЫ ЕГО ЭФФЕКТИВНОГО ИСПОЛЬЗОВАНИЯ

    Get PDF
    The paper considers matters pertaining to optimization of research activity at higher educational institutions. The Belarussian National Technical University, a leading engineering institution, is taken as an example. A wide spectrum of research activity and schools is presented at the University.Рассмотрены вопросы, связанные с оптимизацией научных исследований в вузах, в первую очередь, на примере БНТУ как ведущего технического университета, в котором представлен широкий спектр научных исследований и школ

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Организационно-управленческие структуры науки и реинжиниринг в высшей школе

    Get PDF
    The paper considers organization and management structures in the field of science and peculiar features of re-engineering as one of the state-of-the-art scientific and methodological practice taking into account the experience of scientific and research work at the Belarussian National Technical University (BNTU).Рассмотрены организационно-управленческие структуры в сфере науки и особенности реинжиниринга как одной из новейших научно-методических практик с учетом опыта научно- исследовательской работы в БНТУ.
    corecore